
MSIM 641 F06 Visualization I

Course Project

A Study to Investigate the Feasibility of Using

Java3D and Rigid Body Dynamics in Games and Simulations

Prepared for

Dr. Yuzhong Shen

by

Randy Brooks

Assigned on

October 4, 2006

Final Submission
Due

December 12, 2006 at 11:59 PM

E-mail address:
randybrooks@charter.net

Phone number:
(757) 688-9739 - Work

(757) 365-9652 - Residence

Site location:
VMASC

MSIM 641 F06 Visualization I

Course Project - 2 - Randy Brooks

Table of Contents

Executive Brief.. 3
1 Introduction ... 4
2 Overview ... 4

2.1 Version History ... 4
2.2 Java3D Architecture.. 4
2.3 Software Features.. 5
2.4 Scene Graph Approach ... 5
2.5 Platform Support ... 5
2.6 Installation... 5
2.7 License .. 6

3 Example Programs... 6
3.1 HelloWorld Example .. 6
3.2 Program Flow.. 6
3.3 Bounding Balls.. 7
3.4 Bird Flocking .. 7

4 Future Growth ... 8
5 Summary.. 8
Appendix ... 10

References ... 10
Development Environment ... 10
Deliverables Included.. 10

MSIM 641 F06 Visualization I

Course Project - 3 - Randy Brooks

Executive Brief

The feasibility of using Java3D and rigid body dynamics (Odejava) in serious games
and simulations is explored in this study. The combined power of Java3D’s rich visu-
alization environment and a powerful physics engine can produce visually pleasing and
entertaining results. Shown below is a simple Java3D program that was written to un-
derstand the structure and richness of the API. The Java3D API is described along
with examples of manipulating objects in 3D space using Odejava. All programs are
installed and run from a Java development environment. Software features, licensing
and history of Java3d are described in some detail. The advantage of using a scene
graph approach is discussed. The summary details the challenges and lesson learned
during the course of this study.

Java3D example of Axis class and Cube class

MSIM 641 F06 Visualization I

1 Introduction
Java3D is a high level visualization API used
with the Java programming language. Java 3D
is a standard extension to the Java 2 JDK.
Open Dynamics Engine (ODE) is an open
source physics engine that is written in C.
Odejava wraps ODE native functions into
Java function calls. Odejava is an industrial
quality library for simulating articulated rigid
body dynamics.1

The Java 3D API is an interface for writing
programs to display and interact with three-
dimensional graphics. Whenever API func-
tionality is ported to a different programming
environment the speed of execution and the
completeness of the port are concerns to the
software developer. Java3D techniques used
to increase performance are discussed.

Andrew Davison’s book2, “Killer Game
Programming in Java”, provided the two
example programs used for this report.

2 Overview

2.1 Version History

Intel, Silicon Graphics, Apple, and Sun
collaborated in making Java3D. A public beta
version was released in March 1998 and a first
version released version December 1998.
The project died from mid-2003 through
summer 2004 as development of Java 3D was
discontinued.

Sun and volunteers have since been continu-
ing its development since 2004 when Java 3D
was released as a community source project.
The current version is 1.4.0 and was released
in February 2006. Version 1.5.0 is currently
issued as a beta version release candidate.
The community appears active and further
support seems promising as version 1.6 is in
the planning stages. Since the project was
unsupported in 2003 similar Java3D imple-
mentations emerged, such as, JOGL, Xith3D,
and others. A check of the Sun web site

indicates that the official version 1.5 will be
released this month.

2.2 Java3D Architecture

A Java 3D program creates instances of Java
3D objects and places them into a scene graph
data structure. The scene graph is an arrange-
ment of 3D objects in a tree structure that
completely specifies the content of a virtual
universe and how it is rendered.

A scene graph structure allows the software
developer to easily manipulate the smallest
object in a scene to the entire collection of
objects. The details of rendering are handled
automatically. There is a DirectX and
OpenGL implementation of the software
which can be changed by passing an argument
to Java in the windows environment. The
default implementation is OpenGL.

A graph is a data structure composed of nodes
and edges. A node is a data element, and edge
is a relationship between data elements. The
nodes in the scene graph are the instances of
Java 3D classes. The edges represent the two
kinds of relationships between the Java 3D
instances. The most common relationship is a
parent-child relationship. A group node can
have any number of children but only one
parent. A leaf node can have one parent and
no children. The other relationship is a refer-
ence. A reference associates a Node
Component object with a scene graph Node.
Node Component objects define the geometry
and appearance attributes used to render the
visual objects.3

Every path in a Java 3D scene graph com-
pletely specifies the state information of its
leaf. State information includes the location,
orientation, and size of a visual object. Conse-
quently, the visual attributes of each visual
object depend only on its path within the
scene graph. This allows for easy manipula-
tion of the entire scene or part of it. The
following diagram show how the nodes are
often drawn to communicate the graph struc-
ture. Lines with arrows are used to show the

MSIM 641 F06 Visualization I

Course Project - 5 - Randy Brooks

edges between the nodes. The higher level
relationship is much easier to use rather than
direct manipulation of OpenGL or DirectX.
Figure 1 shows a typical representation of
nodes in Java3D.

Figure 1.

2.3 Software Features

Java3D supports a multithreaded scene graph
structure that is platform independent since it
is based in Java. The generic real-time API is
stable and performs well for visualization. It
has support for retained, compiled-retained,
and immediate mode rendering to enhance
performance when required. It also has native
support for head-mounted displays.

There is a 3D spatial sound feature to enhance
the immersion sensation when game playing.
There are programmable shaders that support
both OpenGL Shading Language (GLSL) and
C for Graphics (CG).

A Stencil buffer is supported along with the
color and depth buffer (z buffer). The most
typical application of the stencil buffer is to
add shadows to 3D applications.

There are various file importers for most
mainstream 3D formats, like 3DS, OBJ,
VRML, X3D, NWN, and FLT. These file
loaders are not an integral part of the API.
They are widely available through third
parties.

2.4 Scene Graph Approach

There are several advantages of a scene graph
approach. Object management is provided by
the scene graph itself since it is a data struc-
ture. Rendering optimization is available
though the use of the bounds that limit what is
rendered. Behavior models allow for rotation,
translations, and scaling. Collision detection
in provided between objects in the scene
graph. Java3D is multiple thread aware and
makes use of multiple processing threads.
Picking support is automatically supported by
the scene graph. Hierarchical control permits
complex compound structures to be developed
and translated, rotated, or/and scaled with a
simple transformation.4

2.5 Platform Support
The following platforms are fully supported.

 Windows (x86)
 Linux (x86)
 Linux (AMD64)
 Solaris (SPARC)
 Solaris (x86)

The Linux (Power PC) and Linux (IA64
Itanium) following platforms can be built
from the Ant build.xml file, but are not
supplied as pre-built downloads. Mac OS X
10.3.1 or later is not officially supported, but
Java3D has been ported to it by the manufac-
turer. According to Apple, 10.4 (Tiger) is not
supported, but user reports suggest that
Java3D works fine on 10.4 with no problems.

2.6 Installation
Installation requires that the following jar files
are located in the classpath.

 j3d-core.jar
 j3d-core-utils.jar
 vecmath.jar

Specific installation instructions are included
in the readme.txt file included with the zipped
installation files.

MSIM 641 F06 Visualization I

Course Project - 6 - Randy Brooks

Odejava requires that the odejava.dll is placed
put in the windows/system32 sub-directory.
There are two jars needed to run the example
programs.

 log4j-1.2.11.jar
 odejava.jar

2.7 License

There are two licenses required for Java3D.
The source code for the j3d-core-utils is
licensed under the open source Berkeley
Software Distribution (BSD) License.

The source code for the j3d-core and vecmath
projects is licensed under the Java Research
License (JRL) for non-commercial use. The
JRL allows users to download, build, and
modify the source code in the j3d-core and
vecmath projects for research use, subject to
the terms of the license. The source for the
j3d-core and vecmath projects is also licensed
for commercial use under a no-fee Java
Distribution License (JDL).

ODE stands for Open Dynamics Engine. It is
an open source (BSD/LGPL) rigid body
physics library written in C. The log4j-
1.2.11.jar is part of the Apache Project.
Odejava is released under the BSD License.

3 Example Programs

3.1 HelloWorld Example

The HelloWorld class is an Java3D program
that uses a scene graph to contain the objects
that are displayed. Figure 2 is a high level
graphic example of the HelloWorld program.

Figure 2.

3.2 Program Flow

The Axis class that was developed demon-
strates several uses of transformations and
transforms to positions the axis. HelloWorld
creates an instance of the Axis class. Figure 3
is a graphic representation of the code that
was developed for the Axis class. The X axis
is shown in detail. Figure 4 shows a screen
print from the HelloWorld program.

When the HelloWorld class main function is
called a new instance of HelloWorld is
created. The window is initialized and then
Java3D is initialized including the axis and a
cube at the origin. Lighting is enabled and
mouse movement is captured by the obit
behavior in the scene graph.

The axes are cylinders with cones attached.
Since a cylinder’s default position is pointing
up the Y-axis when created, a Transform-
Group is needed to move the cylinder into the
correct position. A TransformGroup is needed
for each axis. Material properties are enabled
and color is applied to the appearance. Each
axis has a 3D extruded letter next to the
positive direction. The Java3D ‘lookat’
function is set to 35, 35, and 35 in the x, y,
and z directions. The mouse wheel controls
zooming and the left button moves the axes.

MSIM 641 F06 Visualization I

Course Project - 7 - Randy Brooks

Figure 3.

 Figure 4.

3.3 Bounding Balls

This bounding ball program written by
Andrew Davison is an example of the power
of Java3D. Several textured spheres are

created and allowed to react to the 3D envi-
ronment based. The spheres spin
independently and have gravity and friction
properties. They bounce against each other
and the bounding walls. A special behavior is
created to allow the spheres to interact with
the environment. Odejava handles the calcu-
lations when one sphere is in contact with
another. Performance seems good with about
10 to 15 spheres using standard windows
hardware.

Figure 5 shows the screen during execution of
the program. A short video capture is in-
cluded with the delivered report showing the
movement and interactions.

Figure 5.

3.4 Bird Flocking

Another program example used to study the
feasibility of Java3D and Odejava is the bird
flocking program written by Andrew Davison.
He creates flocks of bird objects and there is a
predator and prey relationship between them
that slowly decreases the bird population. It
uses the same Java3D environment as shown
in the last example. This is a good example of
the power of the combination of using Java3D

MSIM 641 F06 Visualization I

Course Project - 8 - Randy Brooks

for visualization and Odejava as the rigid
dynamic engine. It produces an environment
showing movement that appears to be flocks
of birds flying through 3D space.

Figure 6.

4 Future Growth
Java3D is a well supported and active com-
munity that appears to have a robust future.
The Sun tutorial, although dated has great
examples of how to use the API. A roadmap
for Java3D at Sun’s web site indicates that
many more features will be implemented.
Features, such as, OpenGL’s auto mip-map
generation is planned for version 1.6. As
more features are added without the underlin-
ing complexity of OpenGL or DirectX I
believe that the user community will continue
to support Java3D. Another indication that
Java3D is actively supported is the number of
RSS list servers keeping contact with sub-
scribers.

Unfortunately, Odejava has recently become
unsupported. I was quite surprised to find that
the main hosting web site http://odejava.org is
not currently available due to message that
indicates excessive bandwidth usage. My

research indicates that this message has
appeared since September 2006. Sun Micro-
systems does host the source code and the
binary download for all platforms, although
the dates are few years old and it does not
appear very active. This means that newer
features in Java 1.5.0, such as, the use of
generics types will not be supported in Ode-
java.

5 Summary
This report is based on three technical subjects
that were studied. First, the Java3D API was
studied in detail. Secondly, Odejava examples
were explored to gain a better understanding
of its potential use in games and simulations.
Thirdly, a small software application was
developed to demonstrate knowledge of using
scene graph architecture. The majority of the
effort on this project was spent on software
development and learning Java3D well
enough to produce a simple application.

Learning Java3D is made difficult due to the
lack of quality published books on the subject.
The reference section includes a few of the
most popular books. There are several good
web tutorials but the levels of complexity vary
greatly. A lot of time can be wasted in search-
ing for good code examples when
implementing unfamiliar features of the API.

Many web sites and books have references to
3D file loaders and other information that are
no longer supported or available. This can be
very frustrating when researching the current
levels of support in the user community.

One lesson learned from the experience of
writing a Java3D program is to fully under-
stand the scene graph structure before starting
to code. There can be many branch groups
and transformation groups all to manipulate
the objects in a scene.

A good diagram needs to be created at the
beginning of the exercise. It is very easy to
lose the context of where one is in the scene
graph structure. If you add child node to the

MSIM 641 F06 Visualization I

Course Project - 9 - Randy Brooks

wrongly intended branch, strange behavior
can follow. Java3D will not produce the
intended results and there will be no error.

At times during this study, I was developing
code for both the C++ OpenGL projects and
for the Java Axis class. I found that I wanted
to perform pushMatrix and popMatrix opera-
tions in Java3D. This is an example of the
need to understand the context of where you
are in the scene graph. Since in Java3D you
do not have access to the renderer function
(GLUT display callback function) you must
change your thinking perspective.

In Java3D, the programmer must think more
like an artist who is creating a scene of objects
and wiring them together in some logical
order. Furthermore, objects like lighting and
viewing can be artistically added and changed
in the same way as other object in the scene.

The mix of licenses for Java3D is very confus-
ing. I am hopeful that Sun and the
development community will release Java3D
under the GNU (General Public License) as
they did recently with Java SE.

Java3D and Odejava are very reliable and
feasible tools for use in game creation and
simulation visualization. It was seen many
times that very few lines of code could
produce dramatic changes in the scene.
During the course of software development it
was clear that Java3D has the power to
product visually pleasing and rich graphical
environments.

MSIM 641 F06 Visualization I

Course Project - 10 - Randy Brooks

Appendix

References

1. Odejava web site. https://odejava.dev.java.net/

2. Killer Game Programming in Java, Andrew Davison, O’reilly Press, May 2005

3. Java3D sun tutorial. http://java.sun.com/products/java-edia/3D/collateral/j3d_tutorial_ch1.pdf

4. Java 3D Programming, Daniel Selman, Manning Publication, 2002. Page 51.

5. 3D API Jump-Start, Aaron E. Walsh, Doug Gehringer, Sun Microsystems Press, 2002

Development Environment

 Eclipse IDE 3.2
 Java 5.0.8
 Java3D 1.4.1
 Odejava 2004.05.30

Deliverables Included
 Java jar files to run HelloWorld program
 Short Video AVI screen captures
 Project proposal and this report
 Java source code

